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ON CERTAIN SECOND ORDER EFFECTS IN THE
LIMIT DESIGN OF FRAMESL

by E. T. Onat% Brown University

Abstract: The second order effects due to the changes

in geometry are investigated for the frames composed of
plastic-rigid material, In the case of ideally-plastic
material a criterion is developed to determine whether

the quasi-state distortion of the frame precceeds under
increasing or decreasing loads. The analysis also shows
that when the compressive axial forces are negligible,

even a slight amount of strein-hardening considerably
increases the load necessary for quasi-gtatic deformations.

1, Introduction,.

The plastic methods of analysis and design for beams
and frames [1;2] are mainly concerned with the load at which the
structure could become a mechanism following the formation of
plastic hinges at a sufficient number of sections,

If the changes in geometry caused by the subsequent
deformation is negiected, then it can be shown that in the case

of frames of ductile material the deformation of the structure

proceeds under constant loads, However if this change in geometry

1s taken into account, then continuing deformstion under oonstant
external loads is possible only in exceptional cases [3,4] . Ac-
cordingly as a rule; quasi-static flow then requires either in-
creasing or decreasing external loads, If the applied loads are
increased monotonically, as is customary, the first case corres=-
ponds to a stable process, whereas the second case corresponds to

sudden collapse. Since the present first order theory of limit

1 The results presented in this paper were obtained in the course
of research sponsored by the Office of Naval Research under
Contract N7onr-35801 with Brown University,

2 Research Associate in Applied Mathematics.
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analysis does not furnish a crit rion which would allow one to
distinguish between these two cases, it seems worthwhile to de=-
velop a second order theory which should furnish a clear criterion
for collapse,

If the frame is composed of a rigid strain-hardening
material in which Young's modulus is infinitely large, theorems
of 1limit analysis dgfine a load at which deformation first becomes
possible. In this case the load incrcease to enforce further de-
formation is governed by the rate of strain-hardening and also by
the changes of shape, Because of strain-hardening the plastic
deformation in the frame is no longer concentrated at isolated
sections and instead this deformation is spread over certain finite
segments of the frame,

The purpose of t:. present paper is to determine the
rate at which the loads need to be increased to enforce a quasi.
static motion of framed structures made of either ideally-plastic
rigid or rigid-plastic strain-hardening material,

It will be shown that in the case of ideally plactic
frames an energy criterion can be established to distinguish
between the two cases mentioned above. In the case of strain-
hardening materials, it is found that if the influencs 2f the
axial forces 1s neglected, then the subsequent deformation can
proceecd only with lnerrcasing load when the rate of strain-harden-
ing is not very smail,

As a note of caution 1t must be added that the second

order analysis developed herewith must be supplemented by a study
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of elasto~plastic stability whenever compressive axial forces of

significaat intensity exist ia the structure,

s rames cf Tdeally~Plastic Rigid Material,

Let us consider a frame composed of ideally-plastic
rigid material; and suppose that the loads on this structure are
steadily increased in fixed proportion to each other, A critical
load is finally reached at which the fully plastic moment MP is
developed a sufficient number of sections, and the structure
becomes a mechanism, The calculation of this critical load and
the corresponding mechanism is fairly .simple in comparison with
elastic analyses for highly redundant structures.(a) The sub-
sequent quasi-static motion of this mechanism and the rate of
change of the loads tc achleve th*s motion constitute the scope
of the present investigation,

In order to fix ideas we shall first consider a very
simple model,

The portal frame showvn in Fig. 1 is composed of mem-
bers having the fully plastic moment M,. It is easily shown that
when P reaches the critical value kMo/L plastic hinges Jdevelop at
the corners A; B; Cy Dy and the frame becomes a mechanism with a
single degree of freedom, The subsequent motion of this mechanism
is governed by the basic assumption which states that if at any
one cross-section the moment retains the value My then this cross-

section acts like a hinge (see Fig, 2).
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This suggests that the quasi-étatic deformation of tha
considered mechanism is only possible if the bending moment re-
mains constant, and equal to M,, at A4, B, C and D,.

The resulting four conditions, together with the 3
equilibrium equations yield the following equation for the in-
stantaneous value of P[= igg(l + 3))] as a function of ©{see Fig.
1),

LM UM, /5
_ 0 . 9oVvV2 n
P = &.(1 + d) 7 2 cosec(0 + h) (1)

and therefore for small angles of rotation occuring immediately
after the yield point has been reached,
b = -0,

It follows that quasistatic motion can only be maintained with
decreasing loads, and so P = kM /2 1s the load at which real
collapse occurs,

However if the loads acting had the reverse directions
as depicted in rig, 3; then the same analysis show that the quasi-
static flow would require an increuse in the magnitude of loading,

the instantaneous load now being given by

i,

P I -V—g sec(0 + :1;-) (2)

Load dcformzticon curves for both cases are shown in
Fig. 4, The influence of the axial forces limits the validity
of (1) and (2) to the range where © is small, The above analysis
can easily be extended to more complicated cases. However in
general this will involve the rather lengthy eliminaticn of
internal forces from the equations, In the next section it will

now be shown that an alternstive and simpler procedure is available,
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3, Energy considerations,

We shall now establish an energy criterion for dis-
tingulishing between our two collapse cases. Iii the example of
the previous section let us compare the energy dissipation W with
the work V done by the original loads after a derormation corres-
ponding to a rotation 6, If for small rotations

w(e) > v(s)
we may conclude that quasi-static deformation requires =2dditional
work and hence irncreasing loads. ©On the other hand if
W(e) < V/0)

then the loads must decrease., Since
Ww(e) ~ LM 6

2 (3)
~ C
V(o) hMo(o + = )

the positive sizn being taken in the first case (Fig. 1) and the

negative sign in the second case Fig, (3).

V(0) - W(e) ~ 2M_0° (%)

which is in agreement with the conclusions based upon the statical

considerations mentioned earlier, This procedure can be generali-

zed without difficulty to more complicated cases.

4, Frames of Rigid {train-Hardening Materials.

For the purpose of the present investigation, it is
gufficient to consider a frame composed of material having the
idealized uni-axial stress-strain diagram shovn in Fig. 5. For

continuous loading in tension or compression, we have then the

B
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following stress-strain relation;

o] = Bylel + o (5)
where all symbols are defined in Fig, 5.

If the cross-section of the beam is doubly-symmetric
and if the bending moment lies along an axis of symmetry, then
the classical assumption that the cross-sections remain plane
during bending yields the following relationship between the

bending moment M and the radius of curvature p of the neutral

axia:
MM ™
o) 1 \
= = when M| > | M ], !
BpT " p on (6)
1 .
5 =0 when Ml < 1M I,

where Ep 1s the plastic tangent modulus of the material, F is

the cross-sectional moment of inertia and Mo is the initial yield

moment.,

Now, let us investigate the state of affairs in the
neighbourhood of a yield hinge H following the incipient motion
[Fig. 6]. Suppose that during the subsequent motion the bending
moment at the cross=-sections in the neighborhood of H increases,

According to (6) the neutral axls of the beam will be
curved in the region AB, and thls curved part of the beam will
generally change its size and shape during the deformation,

Since at the end points of the curve AB

the bending moment computed on the straight line extension AF!
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and H'B of thé members 1 and 2 can reasonably be expected to be
sufficiently clcse to the actual bending momeat, This suggests
that the initial deformation of the frame is closely approximated
by the deformation of a frame having ideal yield hinges., However,
the simple yield condition for ideally plastic frames should be
replaced by an equation exprzssing the relationship between the
angle of relative rotation QAB of two neighboring rigid portions
and the bending moment aistribution,

From (6)

and therefore since the bending momentis are computed along

straight lines AH! and H'B, it follows that

= e Mnax 1 Mnax '
EglOyp = 3 f (M-} _)aM + ( (M-M_)aM,

1JM o) M
oF o o)
e S 2 »
EpIOAB = (V1 + vz)(Mmax‘Mo) g (7)
where V1 and V2 are the absolute values of the shear forces
{Fig. 61].

Eq. (7) is the condition for strain hardening which
replaces M, . = Mo for perfectly plastic frames, After thess
preliminary remarks on the incipient bending deformations of
rigid strain<hardening beams, we may now investigate second order
effects, viz, the determination of the rate at which the loads
need to be increased to enforce quasi-static motions 4 To

1illustrate the preceding theory let us consider the simple
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example shown in Fig., (7). The yleld point is reached when

P = Po where

M
2 . (8)

o X cos ¢

p

and H becomes a yield hinge. If the angle of rotation of one of
the bars is denoted by @, the condition (7) applied at H gives

2
PLcos(@=9) - M
28 10 = 2ec0sla=0) - Mo
p P cos (a-0)
or
P cos a - NP P _.\1/?] (9)
s e L 7 8@ T jJEE LTED . \
P cos(x-0) * M St gl 7
o
where E. I

P. o
Mt L 4
o

The corresponding load deformation curves are shown in Fig, 7 for

a typical shape of frame and for various degrees of strain-harden-

ing, It is clear that even a slight amount of strain-hardening
will considerably increase "e load necessary for quasi-static
deformations of the structure.,

For example, if the frame cross-section is rectangular

c=1E b
36,4
where h is the depth of the bar. For the relatively small degree
E .
of strain-ha- dening 32 = 1,5, and for'i = 103 e = .05,
(o}

Whereas in the case of ideally plastic material P = Py

i1s a real collapse locad, a slight amount of strain hardening of

the material necessitates increasing loads with increasing defore

mations (Fige. 7).
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